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EXPECTED IMPACT

Krannert School of Management Our ultimate requirement for the objective function is to maximize the profit
from a particular store. Using the constraints of store space, category space,
and the budget in a particular store we can expect to find increased profit
along with an optimized SKU selection. Post optimization we expect an
average Increase of 11.24% in Profit per store. SKU selection drops by
4.52%. By changing the required store coverage constraint, we do not

significant changes post 82%.
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STATISTICAL RESULTS

The two planograms represent the change in category-wise space allocation before and after our
optimization function was applied to the data.
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Fig 2. Study Design

MATHEMATICAL FORMULATION
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CONCLUSIONS

The model is extremely configurable & can be modified for customized

needs in the future
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